Eureka Math ${ }^{2}$ Year at a Glance
 Algebra I: Modeling with Functions

MINDS

Module 1 Expressions, Equations, and Inequalities in One Variable	Module 2 Equations and Inequalities in Two Variables	Module 3 Functions and Their Representations	Module 4 Quadratic Functions	Module 5 Linear and Exponential Functions	Module 6 Modeling with Functions
Topic A: Adding, Subtracting, and Multiplying Polynomial Expressions Lesson 1: The Growing Pattern of Ducks - Compare verbal and mathematical representations of a visual pattern. A.SSE.A.2, MP8, A1.Mod1.AD1 Lesson 2: The Commutative, Associative, and Distributive Properties - Rewrite algebraic expressions in equivalent forms. - Show the equivalency of two algebraic expressions by using properties and operations. A.SSE.A.2, MP7, A1.Mod1.AD1 Lesson 3: Polynomial Expressions - Compare numbers in base 10 to numbers in base x. A.APR.A.1, A.SSE.A.2, MP6, A1.Mod1.AD, A1.Mod1.AD2 Lesson 4: Adding and Subtracting Polynomial Expressions	Topic A: Linear Equations and Inequalities in Two Variables Lesson 1: Solution Sets of Linear Equations in Two Variables - Explain advantages and disadvantages of representations of solution sets of two-variable equations. - Write and graph equations in two variables to represent situations. A.CED.A.2, A.CED.A.3, A.REI.D.10, MP2, A1.Mod2.AD1, A1.Mod2.AD2, A1.Mod2.AD3, A1.Mod2.AD7 Lesson 2: Graphing Linear Equations in Two Variables - Graph linear equations by using a variety of methods and defend the chosen methods. A.CED.A.2, A.REI.D.10, MP6, A1.Mod2.AD2, A1.Mod2.AD7 Lesson 3: Creating Linear Equations in Two Variables - Write linear equations in two variables.	Topic A: Functions and Their Graphs Lesson 1: The Definition of a Function - Use the definition of a function to identify examples of functions and their domains and ranges. - Use function notation to express outputs for given inputs of a function. F.IF.A.1, F.IF.A.2, MP6, A1.Mod3.AD3, A1.Mod3.AD4, A1.Mod3.AD6 Lesson 2: Representing, Naming, and Evaluating Functions - Represent functions with equations and examine their domains. - Interpret statements that use function notation in context. F.IF.A.1, F.IF.A.2, MP6, A1.Mod3.AD3, A1.Mod3.AD4, A1.Mod3.AD6 Lesson 3: The Graph of a Function - Graph functions by evaluating them for select inputs in their domains. - Relate the domain of a function to its graph.	Topic A: Quadratic Functions and Their Graphs Lesson 1: Falling Objects - Represent the distance traveled by a falling object with graphs, tables, and equations. - Explain why a linear function is not a good model for the distance traveled by a falling object. F.IF.B.4, F.IF.B.6, MP2, A1.Mod4.AD14, A1.Mod4.AD16 Lesson 2: Projectile Motion - Analyze the height over time of an object falling due to gravity by using tables, graphs, and equations. - Interpret different representations of functions that model projectile motion. F.IF.B.4, F.IF.B.5, MP7, A1.Mod4.AD14, A1.Mod4.AD15 Lesson 3: Analyzing Functions That Model Projectile Motion - Interpret the coefficients of a quadratic equation that models the height of a projectile as a function of time.	Topic A: Arithmetic and Geometric Sequences Lesson 1: Exploring Patterns - Represent sequences by using pictures, tables, equations, and graphs. - Recognize sequences as functions with a domain in the nonnegative integers. F.IF.A.2, F.IF.A.3, F.BF.A.1.a, MP3, A1.Mod5.AD5, A1.Mod5.AD6, A1.Mod5.AD9, A1.Mod5.AD11 Lesson 2: The Recursive Challenge - Use a recursive process to generate a sequence. - Write recursive formulas to model and solve problems. F.IF.A.2, F.IF.A.3, F.BF.A.1.a, MP1, A1.Mod5.AD5, A1.Mod5.AD6, A1.Mod5.AD10, A1.Mod5.AD11 Lesson 3: Recursive Formulas for Sequences - Write recursive formulas for sequences.	Topic A: Modeling Bivariate Quantitative Data Lesson 1: Analyzing Paint Splatters - Determine what type of model is appropriate for a set of bivariate quantitative data. - Use residual plots to determine whether a linear model is appropriate for a set of bivariate quantitative data. F.LE.A.1, S.ID.B.6.a, S.ID.B.6.b, S.ID.B.6.c, MP1, A1.Mod6.AD1, A1.Mod6.AD2 Lesson 2: Using Residual Plots to Select Models for Data - Use residual plots to determine whether sets of bivariate quantitative data are best modeled by using a linear or nonlinear function. - Use appropriate models to represent bivariate data sets and use the models to make predictions. F.LE.A.1, S.ID.B.6.a, S.ID.B.6.b, S.ID.B.6.c, MP7, A1.Mod6.AD1, A1.Mod6.AD2 Lesson 3: Populations of US Cities

- Add and subtract polynomial
expressions.
A.APR.A.1, MP7, A1.Mod1.AD2,
A1.Mod1.AD3

Lesson 5: Multiplying Polynomial Expressions

- Multiply polynomial expressions.
A.APR.A.1, MP3, A1.Mod1.AD2

A1.Mod1.AD4

Lesson 6: Polynomial Identities

- Multiply polynomial expressions to establish polynomial identities.
A.APR.A.1, MP3, A1.Mod1.AD4

Topic B: Solving Equations and Inequalities in One Variable

Lesson 7: Printing Presses

- Investigate a problem that can be solved by reasoning quantitatively or algebraically.

A.CED.A.1, A.REI.B.3, MP1,

A1.Mod1.AD6, A1.Mod1.AD7
Lesson 8: Solution Sets for Equations and Inequalities in One Variable

- Find values to assign to the variables in equations or inequalities that make the statements true.
- Describe a solution set in words, in set notation, and on a graph A.REI.B.3, MP6, A1.Mod1.AD6

Lesson 9: Solving Linear Equations in One Variable

- Explain each step in solving a linear equation.
A.CED.A.2, MP7, A1.Mod2.AD1

Lesson 4: Solution Sets of Linea
Inequalities in Two Variables

- Relate a half-plane to the graph of the solution set of a linear inequality in two variables
- Graph linear inequalities in two variables.
A.REI.D.12, MP7, A1.Mod2.AD8

Lesson 5: Graphing Linear
Inequalities in Two Variables

- Graph linear inequalities in two variables.
A.REI.D.12, MP6, A1.Mod2.AD8

Lesson 6: Applications of Linear
Equations and Inequalities

- Create and graph equations and
nequalities in two variables to represent the relationship between quantities.
- Represent constraints with equations and inequalities.
A.CED.A.2, A.CED.A.3, MP1, A1.Mod2.AD1, A1.Mod2.AD2 A1.Mod2.AD3

Topic B: Systems of Linear Equations and Inequalities in Two Variables

Lesson 7: Low-Flow Showerhead

- Investigate a real-world problem that
can be solved by using a system of
linear equations.
A.REI.C.6, MP4, A1.Mod2.AD5

Lesson 8: Systems of Linear Equations in Two Variables
F.IF.A.1, F.IF.B.5, MP1, A1.Mod3.AD4, A1.Mod3.AD5, A1.Mod3.AD9

Lesson 4: The Graph of the Equation $y=f(x)$

- Graph the equation $y=f(x)$ and compare it to the graph of f F.IF.A.1, F.IF.C.7.a, MP7, A1.Mod3.AD4, A1.Mod3.AD5, A1.Mod3.AD10

Lesson 5: Using Pseudocode to Compare Graphs of Functions and Graphs of Equations (Optional) - Use pseudocode to make sense of the processes of graphing a function f IFA. FIF.C.7a, MP1
F.IF.A.1, F.IF.C.7.a, MP1,

A1.Mod3.AD5, A1.Mod3.AD10

Lesson 6: Representations of
Functions

- Use equations, tables, and graphs to represent functions in context.
- Strategically choose function
representations to model real-world contexts.
F.IF.A.1, F.IF.A.2, F.IF.C.7.a, MP2 A1.Mod3.AD4, A1.Mod3.AD5, A1.Mod3.AD6, A1.Mod3.AD10

Topic B: Interpreting
Functions
Lesson 7: Exploring Key Features of a Function and Its Graph

- Informally identify key features of a - Informally identify key
function and its graph. F.IF.B.4, MP2, A1.Mod3.AD7, A1.Mod3.AD8
F.IF.A.2, F.IF.A.3, F.BF.A.1.a, MP7

A1.Mod5.AD5, A1.Mod5.AD6
A1.Mod5.AD10
Lesson 4: Explicit Formulas for Sequences

- Write an explicit formula for
sequence.
F.IF.A.2, F.IF.A.3, F.BF.A.1.a, MP8

A1.Mod5.AD5, A1.Mod5.AD6,

A1.Mod5.AD9

Lesson 5: Arithmetic and

Geometric Sequences

- Explain the structure of arithmetic
and geometric sequences.
Write recursive and explicit
Write recursive and explicit formulas sequences.
F.IF.A.3, F.BF.A.1.a, F.BF.A. 2 MP3, A1.Mod5.AD6 A1.Mod5.AD9, A1.Mod5.AD10, A1.Mod5.AD12

Lesson 6: Representations of Arithmetic and Geometric
Sequences

- Convert between recursive and explicit formulas for arithmetic and geometric sequences.
- Write formulas for arithmetic and geometric sequences from a graph o a real-world context.
F.IF.A.3, F.BF.A.1.a, F.BF.A.2

A1.Mod5.AD6, A1.Mod5.AD9,
A1.Mod5.AD10, A1.Mod5.AD12,

A1.Mod5.AD13

Lesson 7: Sierpinski Triangle (Optional)
Explore exponential growth through patterns in the Sierpinski triangle.
model for justiy a mathematica F.LE.A.1, S.ID.B.6.a, S.ID.B.6.b S.ID.B.6.c, MP1, MP3 A1.Mod6.AD1, A1.Mod6.AD2

Topic B: Developing Models for Contexts

Lesson 4: The Deal

- Model a real-world problem by using a recursive process
F.BF.A.1.a, F.BF.A.1.b, F.LE.A.2, MP2, A1.Mod6.AD4

Lesson 5: Solar System Models - Create a scale model by choosing appropriate quantities and units. F.BF.A.1, F F.BF.A.1.b, F.LE.A. 2 MP6, MP8, A1.Mod6.AD3

Lesson 6: Designing a Fundraiser

- Create and justify a mathematical model to solve a problem by using a system of linear inequalities.
F.BF.A.1.a, F.BF.A.1.b, F.LE.A.2, MP4, MP7, A1.Mod6.AD4

Lesson 7: World Record Doughnut

- Solve a problem that is well-modeled with a quadratic function.
- Reflect on the effectiveness of a model when finding a solution to a problem.
F.BF.A.1.a, MP4, MP5

A1.Mod6.AD4

- Solve quadratic equations by guess and check.
A.SSE.A.2, A.REI.B.4.b, MP7, A1.Mod4.AD3, A1.Mod4.AD11

A1.Mod1.AD5, A1.Mod1.AD6

Lesson 10: Some Potential Dangers When Solving Equations (Optional) Explore steps in solving an equation Explore steps in solving an equation the solution set.
A.REI.A.1, A.REI.B.3, MP3

A1.Mod1.AD5, A1.Mod1.AD6
Lesson 11: Writing and Solving Equations in One Variable

- Create equations in one variable and use them to solve problems.
A.CED.A.1, A.CED.A.3, A.REI.A.1,
A.REI.B.3, MP7, A1.Mod1.AD5,

A1.Mod1.AD6, A1.Mod1.AD7,

A1.Mod1.AD9

Lesson 12: Rearranging Formulas - Rearrange formulas to highlight a quantity of interest. A.CED.A.4, MP7, A1.Mod1.AD10

Lesson 13: Solving Linear Inequalities in One Variable

- Solve inequalities and graph the
solution sets on the number line
A.CED.A.1, A.REI.B.3, MP7,

A1.Mod1.AD6, A1.Mod1.AD7

Topic C: Compound Statements Involving Equations and Inequalities in One Variable

Lesson 14: Solution Sets of Compound Statements

- Describe the solution set of two equations or inequalities joined by
- Solve systems of linear equations
graphically and algebraically by usin substitution.

A.REI.C.6, MP1, A1.Mod2.AD5,

A1.Mod2.AD6
Lesson 9: A New Way to Solve
Systems

- Solve systems of linear equations by using the elimination method A PEIC5, A RELC. 6 MP7
A1.Mod2.AD4, A1.Mod2.AD5
Lesson 10: The Elimination Method
- Solve systems of linear equations algebraically by using the elimination method and by using a method of their choice.
A.REI.C.6, MP5, A1.Mod2.AD5

Lesson 11: Applications of Systems of Equations

- Investigate contextual problems that can be solved by creating and solvin systems of linear equations.
A.REI.C.6, MP2, A1.Mod2.AD5, A1.Mod2.AD6.

Lesson 12: Solution Sets of Systems of Linear Inequalities

- Identify the intersection of two halfplanes and, in certain cases, parts of the boundary lines as the graph of the solution set of a system of two linear inequalities in two variables
- Graph a system of linear inequalities in two variables.
A.REI.D.12, MP6, A1.Mod2.AD9

Lesson 13: Graphing Solution Sets of Systems of Linear Inequalities - Graph the solution set of systems of linear inequalities in two variables. A.REI.D.12, MP7, A1.Mod2.AD9

Lesson 8: Identifying Key Features of a Function and Its Graph

- Identify and interpret key features of a function and its graph. F.IF.B.4, MP7, A1.Mod3.AD7

Lesson 9: Representing Functions from Verbal Descriptions

- Sketch the graphs of functions given verbal descriptions.

FIF.B.4, MP2, A1.Mod3.AD7,

A1.Mod3.AD8

Lesson 10: Using Graphs to Solve

 Equations- Solve equations of the form $f(x)=$ $g(x)$ graphically by looking for the intersection points of the graphs of $y=f(x)$ and $y=g(x)$.
A.REI.D.11, MP7, A1.Mod3.AD1, A1.Mod3.AD2

Lesson 11: Comparing Functions - Compare properties of functions that are represented in different ways. F.IF.B.4, F.IF.C.9, MP5, A1.Mod3.AD7, A1.Mod3.AD12

Lesson 12: Mars Curiosity Rove

- Engage in the modeling cycle to represent a real-world context with a graph.
F.IF.B.4, MP4, A1.Mod3.AD7 A1.Mod3.AD8

Topic C: Piecewise-Defined Linear Functions

Lesson 13: Modeling Elevation as a Function of Time

Lesson 7: Solving Quadratic
Equations by Factoring: Splitting the Linear Term

- Solve quadratic equations by
factoring by splitting the linear term
A.SSE.A.2, A.REI.B.4.b, MP1,

A1.Mod4.AD3, A1.Mod4.AD11
Lesson 8: A Summary of Solving Quadratic Equations by Factoring

- Solve quadratic equations by strategically using a factoring method.
A.SSE.A.2, A.REI.B.4.b, MP7, A1.Mod4.AD3, A1.Mod4.AD11

Lesson 9: Creating and Solving Equations in One Variable

- Write and solve quadratic equations in one variable for a given context. A.SSE.A.2, A.CED.A. 1 , A.REI.B.4.b, MP1, A1.Mod4.AD3, A1.Mod4.AD6, A1.Mod4.AD11

Lesson 10: Zeros of Functions

- Find zeros of quadratic functions by factoring.
- Write an equation for a quadratic function given its zeros.
A.SSE.A.2, A.SSE.B.3.a, F.IF.C.8.a MP7, A1.Mod4.AD3,
A1.Mod4.AD4, A1.Mod4.AD18
Lesson 11: Graphing Quadratic Functions from Factored Form Write equations for a function in Write equations for a function in factored
- Use the factored form of a quadratic function to sketch its graph.
A.SSE.A.2, A.SSE.B.3.a,
A.CED.A.2, F.IF.B.4, F.IF.C.7.a,
F.IF.C.8.a, MP2, A1.Mod4.AD3,
F.IF.A.2, F.BF.A.1.a, F.BF.A.2,

MP8, A1.Mod5.AD5,

A1.Mod5.AD9, A1.Mod5.AD10,

A1.Mod5.AD12

Topic B: Exponential
Functions and Their Graphs
Lesson 8: Exponential Functions

- Explore situations that can be
modeled with exponential functions. A.SSE.A.1.b, F.BF.A.1.a, F.LE.A.2, MP2, A1.Mod5.AD2,
A1.Mod5.AD11, A1.Mod5.AD17

Lesson 9: Unit Fraction Exponents - Evaluate numerical expressions in the form $b^{\frac{1}{n}}$ for positive real numbers b where n is 2 or 3 .

N.RN.A.1, N.RN.A.2, MP7,

A1.Mod5.AD1

Lesson 10: Rational Exponents

- Extend exponent properties to
rational exponents.
- Evaluate numerical expressions in the form $b^{\bar{n}}$ for positive real numbers b, form b_{n} forsitive real numbers N.RN.A.1, N.RN.A.2, MP7,

A1.Mod5.AD1

Lesson 11: Graphing Exponentia Functions

- Graph exponential functions in the form $f(x)=b^{x}$ where $b>0$ and $b \neq$
- Identify key features of the graphs of exponential functions in the form $(x)=b^{x}$

Lesson 19: Describing the Center of
Distribution

Distribution
Find the mean and median of data shown in a dot plot and estimate the mean and median of a data histogram.
Identify whether the mean and/or the median appropriately describes a
ypical value for a given data set.
S.ID.A.1, S.ID.A.2, S.ID.A.3, MP1, A1.Mod1.AD11, A1.Mod1.AD12,
A1.Mod1.AD13
Lesson 20: Using Center to
Compare Data Distributions

- Determine the median from data
distributions displayed in box plots - Use the median to compare data distributions displayed in box plots
A1.Mod1.AD11, A1.Mod1.AD12
A1.Mod1.AD13
Lesson 21: Describing Variability in a Univariate Distribution with Standard Deviation
Calculate standard deviation to
represent a typical variation from the mean of a data distribution.
- Use standard deviation to compare two data distributions.
S.ID.A.2, S.ID.A.3, MP5

A1.Mod1.AD12, A1.Mod1.AD13
Lesson 22: Estimating Variability in Data Distributions

- Estimate and compare variation in data distributions represented by histograms.
- Use the interquartile range to compare the variation in data distributions represented by box plots and dot plots.
- Calculate residuals for a set of d
S.ID.B.6.b, S.ID.B.6.c, MP2,

A1.Mod2.AD14, A1.Mod2.AD15
Lesson 19: Analyzing Residuals

- Create residual plots for sets of bivariate quantitative data
- Observe and interpret patterns in residual plots of data.
S.ID.B.6.b, MP4, A1.Mod2.AD14

Lesson 20: Interpreting Correlation

- Use technology to determine the value of the correlation coefficient for a given bivariate data set
- Interpret the value of the correlation coefficient as a measure of strength and direction of a linear association and distinguish between correlation and causation.

S.ID.B.6.c, S.ID.C.8, S.ID.C.9,

MP2, A1.Mod2.AD15,
A1.Mod2.AD17, A1.Mod2.AD18
Lesson 21: Analyzing Bivariate
Quantitative Data

- Analyze bivariate quantitative data sets.
S.ID.B.6, S.ID.C.7, S.ID.C.8, S.ID.C.9, MP1, A1.Mod2.AD12, A1.Mod2.AD16, A1.Mod2.AD17 A1.Mod2.AD18

Topic D: Categorical Data on Two Variables

Lesson 22: Summarizing Bivariate Categorical Data with Two-Way Tables

- Represent bivariate categorical data by using two-way frequency tables and relative frequency tables.
- Explore transformations of the graphs F.BF.B.3, MP3, A1.Mod3.AD14, A1.Mod3.AD15

Lesson 19: Building New

Functions-Translation

- Recognize that the graph of $y=$
$f(x)+k$ is a vertical translation of the graph of $y=f(x)$.
- Recognize that the graph of $y=$
$f(x-k)$ is a horizontal translation of
the graph of $y=f(x)$.
F.BF.B.3, F.IF.C.7.b, MP8

A1.Mod3.AD15

Lesson 20: Building New

 Functions-Reflections- Recognize that the graph of $y=$
$-f(x)$ is a reflection of the graph of $y=f(x)$ across the x-axis. - Recognize that the graph of $y=$ $f(-x)$ is a reflection of the graph of $y=f(x)$ across the y-axis.

F.BF.B.3, MP8, A1.Mod3.AD14

A1.Mod3.AD15

Lesson 21: Building New Functions-Vertical Scaling - Recognize that the graph of $y=$ $k f(x)$, where $|k|>0$, is a vertical scaling of the graph of $y=f(x)$. - Distinguish between graphs that have been vertically stretched and graphs that have been vertically compressed. F.BF.B.3, MP7, A1.Mod3.AD14, A1.Mod3.AD15

Lesson 22: Building New Functions-Horizontal Scaling - Explain that the graph of $y=$ $f\left(\frac{1}{k} x\right)$ where $|k|>0$ is a horizontal scaling of the graph of $y=f(x)$.
quadratic equation.

- Complete the square to derive the quadratic formula
A.SSE.A.2, A.REI.B.4.a
A.REI.B.4.b, MP3, A1.Mod4.AD3, A1.Mod4.AD10, A1.Mod4.AD11

Lesson 16: Solving Quadratic Equations

- Solve quadratic equations by using the quadratic formula
Solve quadratic equations by
strategically choosing a method
A.REI.B.4.b, MP1, A1.Mod4.AD1

Lesson 17: Rewriting Square Roots

- Rewrite square roots in simplest radical form
- Explain why the product of a nonzero rational number and an irrationa HSN-RN.B.3, MP3, A1.Mod4.AD

Lesson 18: The Quadratic Formula and Zeros of a Function

- Use the discriminant to determine the number and nature of the zeros of a quadratic function
- Use the quadratic formula to identify key features of the graph of a quadratic function.

A.REI.B.4.b, MP7, A1.Mod4.AD1

Lesson 19: Transforming the

 Graphs of Quadratic Function - Graph quadratic functions as transformations of the graph of $f(x)=x^{2}$- Write an equation for a quadratic function in the form $f(x)=a(x$ $h)^{2}+k$ given the graph.
- Identify key features of the graph of a quadratic function written in vertex form.

Calculate and compare simple and
Dound interest. modeled with a linear function and mpound interest can be modeled with an exponential function.
F.BF.A.1.a, F.LE.A.1, MP2,

A1.Mod5.AD11, A1.Mod5.AD15
Lesson 16: Exponential Growth

- Write equations for functions that represent exponential growth and use them to solve problems.
- Recognize and represent exponential growth in equations, graphs, and tables.
A.SSE.A.1.b, F.LE.A.2, MP7,

A1.Mod5.AD2, A1.Mod5.AD17

Lesson 17: Exponential Decay - Write equations for functions that model exponential decay and use them to solve problems.

- Recognize and represent exponential decay in equations, graphs, and tables.

A.SSE.A.1.b, F.LE.A.2, MP2,

A1.Mod5.AD2, A1.Mod5.AD17

Lesson 18: Modeling Populations - Write equations for functions that model exponential growth or decay - Interpret equations for exponential functions.
A.SSE.A.1.b, A.SSE.A.2,
A.SSE.B.3.c, F.IF.C.8.b, F.LE.A.1, F.LE.B.5, MP6, A1.Mod5.AD2, A1.Mod5.AD3, A1.Mod5.AD15 A1.Mod5.AD19

Lesson 19: Analyzing Exponentia Growth

A1.Mod1.AD12, A1.Mod1.AD13

Lesson 23: Comparing

Distributions of Univariate Data

- Compare two or more data sets by - Compare two or more data sets by - Interpret differences in data
distributions in context.

S.ID.A.2, S.ID.A.3, MP1,

A1.Mod1.AD12, A1.Mod1.AD13

- Interpret marginal and jo
frequencies in context.
S.ID.B.5, MP2, A1.Mod2.AD10,

A1.Mod2.AD11

Lesson 23: Bivariate Categorica Data and Conditional Relative Frequency Tables

- Identify trends in bivariate categorical data from two-way relative frequency tables.
- Construct conditional relative frequency tables and interpret them S.ID.B.5, MP6, A1.Mod2.AD10, A1.Mod2.AD11

Lesson 24: Conditional Relative Frequencies and Association

- Construct and interpret row and column conditional relative frequency tables in context to determine whether an association exists between categorical variables.
- Distinguish between association and a cause-and-effect relationship.
S.ID.B.5, MP4, A1.Mod2.AD10,

A1.Mod2.AD11

- Apply horizontal scalings to graphs
and identify horizontal scalings from graphs.

F.BF.B.3, MP6, A1.Mod3.AD14,

 A1.Mod3.AD15Lesson 23: A Summary of
Transforming the Graph of a

Function

- Transform the graph of a function by using translations, reflections, and/or scalings.
- Apply understanding of
transformations to write an equation
for a function given its graph
F.BF.B.3, F.IF.C.7b, MP7,

A1.Mod3.AD11, A1.Mod3.AD14,

A1.Mod3.AD15

Lesson 20: Art with

Transformations (Optional)

- Use transformations of graphs of functions to create a picture

F-BF.B.3, MP1, A1.Mod4.AD20

Lesson 21: Completing the Square to Graph Quadratic Functions

- Complete the square to rewrite a
quadratic function in vertex form
- Identify key features of the graph of a quadratic function written in vertex form.
A-SSE.B.3.b, F-IF.B.4, F-IF.C.9, MP6, A1.Mod4.AD5,
A1.Mod4.AD14, A1.Mod4.AD19

Topic D: Modeling with
Quadratic Functions

Lesson 22: A Summary of Graphing

Quadratic Functions

- Graph quadratic functions written in a variety of forms and identify key features of the functions and their graphs
- Determine which forms of quadratic functions can be used to identify specific key features.

A.SSE.B.3.a, A.SSE.B.3.b,

F.IF.C.8.a, MP5, A1.Mod4.AD4,

A1.Mod4.AD5, A1.Mod4.AD18
Lesson 23: Creating Equations of Quadratic Functions to Model Contexts

- Write quadratic functions in vertex form or factored form to model a context.
- Interpret key features of quadratic functions and their graphs in context.

Calculate average rates of change for intervals.

- Recognize that average rates of change for exponential functions are not constant over different intervals of equal length.
F.IF.B.6, F.LE.A.1.a, F.LE.B.5, MP2, A1.Mod5.AD7, A1.Mod5.AD16,

A1.Mod5.AD19

Lesson 20: Comparing Growth of Functions

- Show that linear functions change by equal differences over equal interval and that exponential functions of the form $y=a \cdot b^{x}$ change by equal
actrs over equal hervals.
Explain by using tables and graphs that a quantity increasing xpatity increasing linearly or linearly or quadratically.
A.REID.11, FIF.B.6, F.LEA.3,

MP8, A1.Mod5.AD4,
A1.Mod5.AD7, A1.Mod5.AD18

Topic D: Comparing Linear and Exponential Models

Lesson 21: World Population Prediction

- Write and revise equations o
functions that model a population
- Compare predictions from population models to reason about what type of function best
population.
popul
F.LE.A.1, F.LE.A.2, MP4, MP5,

A1.Mod5.AD15, A1.Mod5.AD17
Lesson 22: A Closer Look at
Populations

			A.CED.A.2, F.BF.A.1.a, S.ID.B.6.a, MP4, A1.Mod4.AD7, A1.Mod4.AD21

